スポンサーリンク
アルゴリズム

【動的計画法】最長部分増加列を典型問題でマスターしよう(Python)

本記事では、動的計画法を用いて最長増加部分列の長さを求める問題を取り扱う。直感的に理解しやすいアルゴリズムに加え、二分探索を導入して計算量をO(NlogN)に抑えるアルゴリズムについても徹底解説している。図や具体例を用いて、じっくり理解したい方におすすめ。
Python

【Python】matplotlibでクラス別に色分けした散布図を描画したい

Pythonを使ってラベル別に色分けされた散布図を描画したいとき、どうすれば良いだろうか。numpy配列を使用し、あらゆる場面に対応した汎用的な関数を作ったので、本記事で紹介する。
アルゴリズム

【動的計画法】DPで最安値問題を解く(Python)

動的計画法(DP)の練習として、最安値問題は適切な難易度の問題だ。本記事では、例題を通してDPアルゴリズムの基礎を理解していく。
機械学習

【k-NN】k最近傍法をゼロから実装しながら理解する(Python)

k最近傍法(k-Nearest Neighbor algorithm, k-NN)は、教師あり学習に分類される機械学習アルゴリズムである。本記事では、Pythonの基本的なライブラリのみを持ちいてゼロからk-NNを実装し、k-NNの仕組みをより深く理解することを目指す。
アルゴリズム

【二分探索(応用編)】最大値の最小化・最小値の最大化問題を解く(Python)

本記事では、2分探索の典型的な問題について、Pythonでの実装例を紹介する。「単調性」を利用した考え方を、いかにコードに落とし込むのか、図や数式を用いて解説している。
アルゴリズム

【二分探索(基礎編)】値の探索、境界値・範囲を求める(Python)

本記事では、2分探索の典型的な問題について、Pythonでの実装例を紹介している。これを読めば、昇順に並んだリストを対象に、値の探索・境界値を求める・範囲を求めるといった二分探索に関する問題を解くことができるようになるだろう。
院試物理

【解答・解説】平成27年度 北大理学院 熱・統計力学 

問1:2準位系の統計力学, 問2:循環過程からなる熱機関
院試物理

【解答・解説】平成27年度 北大理学院 量子力学 

問1:1次元調和振動子, 2次元調和振動子, 問2:角運動量演算子
機械学習

【最適化手法】SGD・Momentum・AdaGrad・RMSProp・Adamを図と数式で理解しよう。

機械学習の分野で有名な最適化手法SGD(確率的勾配降下法)、Momentum、AdaGrad、RMSProp、Adamについてまとめた。数式だけでは直感的に理解することが難しいので、図を多用して解説することを心掛けた。
院試物理

【解答・解説】平成27年度 北大理学院 電磁気学

問1:同心球コンデンサー, 問2:電流がつくる磁束とインダクタンス, 問3:真空中のマクスウェル方程式
スポンサーリンク